Algorithms
Chapter 3 Growth of Functions

Instructor: Ching-Chi Lin
林清池 助理教授
chingchi.lin@gmail.com

Department of Computer Science and Engineering
National Taiwan Ocean University
Outline

- Asymptotic notation
- Standard notations and common functions
The purpose of this chapter

1. The order of growth of the running time of an algorithm gives us some information about:
 - the algorithm’s efficiency
 - the relative performance of alternative algorithms

2. The merge sort, with its $\Theta(n \lg n)$ worst-case running time, beats insertion sort, whose worst-case running time is $\Theta(n^2)$.

3. For large enough inputs, the following are dominated by the effects of the input size itself:
 - multiplicative constants
 - lower-order terms of an exact running time
The purpose of this chapter

- When the input size n becomes large enough, we are studying the **asymptotic** efficiency of algorithms.
- That is, we are concerned with
 - how the running time of an algorithm increases with the size of the input **in the limit**, as the size of the input increases without bound.
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.
The purpose of this chapter

- We will study how to **measure** and **analyze** an algorithm’s efficiency for large inputs.
- The next section begins by defining asymptotic notations,
 - \(\Theta \)-notation
 - \(O \)-notation
 - \(\Omega \)-notation
- Then, we review
 - the commonly used functions in the analysis of algorithms.
For a given function $g(n)$, we denote by $\Theta(g(n))$ the set of functions

$\Theta(g(n)) = \{ f(n) :$ there exist positive constants $c_1, c_2,$ and n_0

such that $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n \geq n_0 \}$.

For $n \geq n_0$, the function $f(n)$ is equal to $g(n)$ to within a constant factor.

Here, $g(n)$ is an **asymptotically tight bound** for $f(n)$.

Because $\Theta(g(n))$ is a set, we could write “$f(n) \in \Theta(g(n))$”.

Usually, we write “$f(n) = \Theta(g(n))$”.
An example

- To show that $n^2/2 - 3n = \Theta(n^2)$, we must determine positive constants c_1, c_2, and n_0 such that

 $$c_1 n^2 \leq n^2/2 - 3n \leq c_2 n^2 \text{ for all } n \geq n_0.$$

- Dividing by n^2 yields

 $$c_1 \leq 1/2 - 3/n \leq c_2.$$

 - $c_1 \leq 1/2 - 3/n$ holds for $n \geq 7$ by $c_1 \leq 1/14$
 - $1/2 - 3/n \leq c_2$ holds for $n \geq 1$ by $c_2 \geq 1/2$

- Thus, choosing $c_1 = 1/14$, $c_2 = 1/2$, and $n_0 = 7$, we can verify that $n^2/2 - 3n = \Theta(n^2)$.
Another example

- We show that $6n^3 \neq \Theta(n^2)$ by contradiction.
 - Suppose c_2 and n_0 exist such that $6n^3 \leq c_2 n^2$ for all $n \geq n_0$.
 - Then $n \leq c_2 / 6$, a contradiction.
 - Since c_2 is constant, it cannot possibly hold for arbitrary large n.
Summary

- The lower-order terms can be ignored
 - because they are insignificant for large n.

- The coefficient of the highest-order term can likewise be ignored
 - since it only changes c_1 and c_2 by a constant factor equal to the coefficient.

- In general, for any polynomial $p(n) = \sum_{i=0}^{d} a_i n^i$, where a_i are constants and $a_d > 0$, we have $p(n) = \Theta(n^d)$.

- For example, $f(n) = an^2 + bn + c$, where a, b, and c are constants and $a > 0$. Then, we have $f(n) = \Theta(n^2)$.
O-notation

- For a given function $g(n)$, we denote by $O(g(n))$ the set of functions
 - $O(g(n)) = \{ f(n):$ there exist positive constants c and n_0 such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0 \}$.
- We write $f(n) = O(g(n))$ implies $f(n)$ is a member of the set $O(g(n))$.
- Note that $f(n) = \Theta(g(n))$ implies $f(n) = O(g(n))$.
 - any proof showing that $f(n) = \Theta(g(n))$ also shows that $f(n) = O(g(n))$.
 - $\Theta(g(n)) \subseteq O(g(n))$.

![Diagram showing O-notation](image)
The meaning of O-notation

- The Θ-notation asymptotically bounds a function from above and below.
- When we have only an asymptotic upper bound, we use O-notation.
- Hence, Θ-notation is a stronger notation than O-notation.
The meaning of O-notation

- Any linear function $an + b$ is in $O(n^2)$, which is easily verified by taking $c = a + |b|$ and $n_0 = 1$.
 - $an + b \leq (a + |b|)n^2$ for $n \geq 1$

- $f(n) = O(g(n))$ merely claims that
 - $g(n)$ is an asymptotic upper bound on $f(n)$
 - does not claim about how tight an upper bound it is

- In practical, O-notation is used to describe the worst-case running time of an algorithm.

- “an algorithm is $O(g(n))$” means that
 - the running time is at most constant times $g(n)$, for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n
Ω-notation

- For a given function $g(n)$, we denote by $\Omega(g(n))$ the set of functions
 - $\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}$.
- We write $f(n) = \Omega(g(n))$ implies $f(n)$ is a member of the set $\Omega(g(n))$.
- Ω-notation provides **asymptotic lower bound**.
The relationship between Θ, O, and Ω

- **Theorem 3.1**
 For any two functions $f(n)$ and $g(n)$, we have $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

- For example:
 - $n^2/2 - 3n = \Theta(n^2) \Rightarrow n^2/2 - 3n = O(n^2)$ and $n^2/2 - 3n = \Omega(n^2)$
 - $n^2/2 - 3n = O(n^2)$ and $n^2/2 - 3n = \Omega(n^2) \Rightarrow n^2/2 - 3n = \Theta(n^2)$
The meaning of Ω-notation

- The Ω-notation is used to bound the **best-case** running time of an algorithm.

- “an algorithm is $\Omega(g(n))$” means that
 - the running time is at least constant times $g(n)$, for sufficiently large n
 - no matter what particular input of size n is chosen for each value of n
Asymptotic notation in equations and inequalities

- On the right-hand side of an equation (or inequality)
 - the equal sign means set membership
 - $n = O(n^2)$ means that $n \in O(n^2)$
 - In a formula
 - it is interpreted as some anonymous function that we do not care to name
 - $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means that $2n^2 + 3n + 1 = 2n^2 + f(n)$, where $f(n) \in \Theta(n)$
- On the left-hand side of an equation
 - No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid
 - $2n^2 + \Theta(n) = \Theta(n^2)$ means that for **any** function $f(n) \in \Theta(n)$, there is **some** function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$ for **all** n
A number of such relationships can be chained together, as in

\[
2n^2+3n+1=2n^2+\Theta(n) = \Theta(n^2)
\]

The first equation says that there is some function \(f(n) \in \Theta(n) \) such that \(2n^2+3n+1=2n^2+f(n) \) for all \(n \).

The second equation says that for any function \(g(n) \in \Theta(n) \), there is some function \(h(n) \in \Theta(n^2) \) such that \(2n^2+g(n)=h(n) \) for all \(n \).

Note that the interpretation implies \(2n^2+3n+1 = \Theta(n^2) \), which is what the chaining of equations intuitively gives us.
o-notation

- For a given function \(g(n) \), we denote by \(o(g(n)) \) the set of functions
 - \(o(g(n)) = \{f(n)\}: \) for any positive constant \(c>0 \), there exists a constant \(n_0>0 \) such that \(0 \leq f(n) < cg(n) \) for all \(n \geq n_0 \).

- We use \(o \)-notation to denote an upper bound that is not asymptotically tight.

- For example, \(2n = o(n^2) \), but \(2n^2 \neq o(n^2) \).

- Intuitively, the function \(f(n) \) becomes insignificant relative to \(g(n) \) as \(n \) approaches infinity; that is,
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
 \]
ω-notation

- For a given function $g(n)$, we denote by $\omega(g(n))$ the set of functions
 - $\omega(g(n)) = \{ f(n) \}$: for any positive constant $c > 0$, there exists a constant $n_0 > 0$ such that $0 \leq cg(n) < f(n)$ for all $n \geq n_0$.

- We use ω-notation to denote a lower bound that is not asymptotically tight.

- For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$.

- The relation $f(n) = \omega(g(n))$ implies that
 $$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
 if the limit exists.
Comparison of functions1/4

- **Transitivity:**
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$,
 - $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$,
 - $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$,
 - $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$,
 - $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.
Comparison of functions $2/4$

- **Reflexivity:**
 - $f(n) = \Theta(f(n))$,
 - $f(n) = O(f(n))$,
 - $f(n) = \Omega(f(n))$.

- **Symmetry:**
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

- **Transpose symmetry:**
 - $f(n) = O(g(n))$ if and only if $g(n) = \Omega(f(n))$,
 - $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.
Comparison of functions3/4

- Analogy between the asymptotic comparison and the real number comparison:
 - $f(n) = \Theta(g(n)) \approx a = b$
 - $f(n) = O(g(n)) \approx a \leq b$
 - $f(n) = \Omega(g(n)) \approx a \geq b$
 - $f(n) = o(g(n)) \approx a < b$
 - $f(n) = \omega(g(n)) \approx a > b$
Comparison of functions

- Trichotomy property of real numbers does not carry over to asymptotic notation:
 - **Trichotomy**: For any two real numbers \(a \) and \(b \), exactly one of the following must hold: \(a < b \), \(a = b \), or \(a > b \).

- Not all functions are asymptotically comparable.
 - For two functions \(f(n) \) and \(g(n) \), it may be the case that neither \(f(n) = O(g(n)) \) nor \(f(n) = \Omega(g(n)) \).
 - For example, the function \(n \) and \(n^{1+\sin n} \) cannot be compared, since the value of \(n^{1+\sin n} \) oscillates between 0 and 2.
Outline

- Asymptotic notation
- **Standard notations and common functions**
Monotonicity

- A function $f(n)$ is **monotonically increasing** if $m \leq n$ implies $f(m) \leq f(n)$.
- A function $f(n)$ is **monotonically decreasing** if $m \leq n$ implies $f(m) \geq f(n)$.
- A function $f(n)$ is **strictly increasing** if $m < n$ implies $f(m) < f(n)$.
- A function $f(n)$ is **strictly decreasing** if $m > n$ implies $f(m) > f(n)$.
Floors and ceilings

- For any real number x, we denote the **greatest** integer less than or equal to x by $\lfloor x \rfloor$ and the **least** integer greater than or equal to x by $\lceil x \rceil$.

- For all real x, for any integer n,
 - $x - 1 < \lfloor x \rfloor \leq \lfloor x \rfloor < x + 1$ for all real x.
 - $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$ for any integer n.

- For any real number $n \geq 0$ and integers $a, b > 0$
 - $\left\lceil n/a \right\rceil / b = \left\lceil n/ab \right\rceil$, and $\left\lfloor n/a \right\rfloor / b = \left\lfloor n/ab \right\rfloor$
 - $\left\lfloor a/b \right\rfloor \leq (a + (b-1))/b$, and $\left\lceil a/b \right\rceil \geq (a - (b-1))/b$

- The floor and ceiling functions are monotonically increasing.
Modular arithmetic

- For any integer a and any positive integer n, the value $a \mod n$ is the **remainder** (or **residue**) of the quotient a/n:
 - $a \mod n = a - \lfloor a/n \rfloor n$

- If $(a \mod n) = (b \mod n)$, we write $a \equiv b \pmod{n}$ and say that a is equivalent to b, modulo n.

- If $a \equiv b \pmod{n}$
 - If a and b have the same remainder when divided by n
 - **If and only if** n is a divisor of $b - a$

- We write $a \not\equiv b \pmod{n}$ if a is not equivalent to b, modulo n.
Polynomials

- **A polynomial in** n **of degree** d **is a function**

 \[P(n) = a_d n^d + a_{d-1} n^{d-1} + \ldots + a_2 n^2 + a_1 n + a_0 \]

 - d is a nonnegative integer
 - a_d, \ldots, a_0 are constants called the **coefficients** of the polynomial
 - $a_d \neq 0$

- An **asymptotically positive** function is one that is positive for all sufficiently large n.

- A polynomial is asymptotically positive if and only if $a_d > 0$.

- For any real constant $a \geq 0$ (respectively, $a \leq 0$), the function n^a is monotonically increasing (respectively, decreasing).

- A function $f(n)$ is **polynomially bounded** if $f(n) = O(n^k)$ for some constant k.
Exponentials

For all real $a > 0$, m, and n, we have the following identities:

- $a^0 = 1$, $a^1 = a$, $a^{-1} = 1/a$
- $(a^m)^n = (a^n)^m = a^{mn}$
- $a^m a^n = a^{m+n}$
- $0^0 = 1$ (for convenient)

For all real constants a and b such that $a > 1$, \(\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \), from which we conclude that $n^b = o(a^n)$.

Thus, any exponential function with a base strictly greater than 1 grows faster than any polynomial function.
Exponentials

The natural logarithm function for all real x,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

- $e = 2.71828$

- For all real x, we have $e^x \geq 1 + x$
 - equality holds only when $x = 0$

- When $|x| \leq 1$, we have $1 + x \leq e^x \leq 1 + x + x^2$

- When $x \to 0$, we have $e^x = 1 + x + O(x^2)$

- For all x, $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$
Logarithms

- We shall use the following notations:
 - $\lg n = \log_2 n$ (binary logarithm)
 - $\ln n = \log_e n$ (natural logarithm)
 - $\lg^k n = (\lg n)^k$ (exponentiation)
 - $\lg \lg n = \lg(\lg n)$ (composition)

- Note that $\lg n + k$ means $(\lg n) + k$, not $\lg(n+k)$.

- If we hold $b > 1$ constant, then for $n > 0$, the function $\log_b n$ is strictly increasing.
For all real $a, b, c > 0$, and n, if the logarithm bases are not 1, then, we have

- $\log_b a^n = n \log_b a$
- $\log_b a = \frac{\log_c a}{\log_c b}$
- $a^{\log_b c} = c^{\log_b a}$
- $a = b^{\log_b a}$
- $\log_b \frac{1}{a} = -\log_b a$
- $\log_b a = \frac{1}{\log_a b}$
- $\log_c (ab) = \log_c a + \log_c b$
Logarithms

- If $|x| < 1$, then
 - $\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$

- We also have the following inequalities for $x > -1$:
 - $\frac{x}{1 + x} \leq \ln(1 + x) \leq x$
 - the equality holds only for $x = 0$
f(n) is called **polylogarithmically bounded** if \(f(n) = O(\lg^k n) \) for some constant \(k \).

By substituting \(\lg n \) for \(n \) and \(2^a \) for \(a \) in \(\lim_{n \to \infty} \frac{n^b}{a^n} = 0 \)

- \(\lim_{n \to \infty} \frac{\lg^b n}{(2^a)^{\lg n}} = \lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0 \)

So, for any constant \(a > 0 \)

- \(\lg^b n = o(n^a) \)

- any positive function grows faster than any polylogarithmic function
Factorials

- \(n! = \begin{cases}
1 & \text{if } n = 0, \\
 n \cdot (n - 1)! & \text{if } n > 0.
\end{cases} \)

- Stirling’s approximation:
 \[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \theta \left(\frac{1}{n} \right) \right) \]

 - \(e \) is the base of the natural logarithm

 - give a tighter upper bound, and a tighter low bound

- One can prove

 - \(n! = o(n^n) \quad \lg(n!) = \theta(n \lg n) \)

 - \(n! = \omega(2^n) \)

- For all \(n \geq 1 \), we have

 \[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\alpha_n}, \text{ where } \frac{1}{12n + 1} < \alpha_n < \frac{1}{12n} \]
Functional iteration

- Let $f(n)$ be a function over the reals. Then, for nonnegative integer i, we recursively define

$$f^{(i)}(n) = \begin{cases}
 n & \text{if } i = 0, \\
 f(f^{(i-1)}(n)) & \text{if } n > 0.
\end{cases}$$

- For example, if $f(n) = 2n$, then $f^{(i)}(n) = 2^i n$
The iterated logarithm function

- Let $\lg^{(i)}n$ be defined as above, with $f(n) = \lg n$
- Note that $\lg^i n = (\lg n)^i \neq \lg^{(i)}n$
- Because the logarithm of a nonpositive number is undefined, $\lg^{(i)}n$ is defined only if $\lg^{(i-1)}n > 0$
- The iterated logarithm function, is defined as
 \[
 \lg^* n = \min\{i \geq 0: \lg^{(i)}n \leq 1\}
 \]
 - $\lg^*2 = 1$
 - $\lg^*4 = 2$
 - $\lg^*16 = 3$
 - $\lg^*65536 = 4$
 - $\lg^*2^{65536} = 5$
 - a very slowly growing function
Fibonacci numbers

- The **Fibonacci numbers** are defined by the recurrence relation
 \[
 \begin{align*}
 F_0 &= 0, \\
 F_1 &= 1, \\
 F_i &= F_{i-1} + F_{i-2} \quad \text{for} \quad i \geq 2.
 \end{align*}
 \]

- The Fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

- Fibonacci numbers are related to the **golden ratio** \(\phi \) and to its conjugate \(\hat{\phi} \).

- One can prove that
 \[
 F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}, \quad \text{where} \quad \phi = \frac{1 + \sqrt{5}}{2} = 1.61803... \quad \text{and} \quad \hat{\phi} = \frac{1 - \sqrt{5}}{2} = -0.61803...\]
Fibonacci numbers

- Since $|\hat{\phi}| < 1$, we have $\frac{\hat{\phi}^i}{\sqrt{5}} < \frac{1}{\sqrt{5}} < \frac{1}{2}$.

- So that the ith Fibonacci number $F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$ is equal to $\frac{\phi^i}{\sqrt{5}}$ rounded to the nearest integer.

- Thus, Fibonacci number grow exponentially.